DP-203T00: Data Engineering on Microsoft Azure course

Data Engineering on Microsoft Azure

Understand the core compute and storage technologies that are used to build an analytical solution.

Learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines.

Create a real-time analytical system to create real-time analytical solutions.

Course Overivew

  • In this DP-203T00: Data Engineering on Microsoft Azure course, the student will learn about the data engineering as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies.
  • Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution.
  • The students will learn how to interactively explore data stored in files in a data lake.
  • They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines.
  • The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data.
  • They will understand the importance of implementing security to ensure that the data is protected at rest or in transit.
  • The student will then show how to create a real-time analytical system to create real-time analytical solutions.
  • The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure.
  • The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
Read More
Read Less
Course Benefits:

Module 1: Explore compute and storage options for data engineering workloads

  • This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads.
  • This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads.
  • The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing.
  • Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration.

Lessons

  • Introduction to Azure Synapse Analytics
  • Describe Azure Databricks
  • Introduction to Azure Data Lake storage
  • Describe Delta Lake architecture
  • Work with data streams by using Azure Stream Analytics
  • Lab : Explore compute and storage options for data engineering workloads
  • Combine streaming and batch processing with a single pipeline
  • Organize the data lake into levels of file transformation
  • Index data lake storage for query and workload acceleration

 

Module 2: Run interactive queries using Azure Synapse Analytics serverless SQL pools

  • In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics.
  • Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store.
  • Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs).

Lessons

  • Explore Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools
  • Lab : Run interactive queries using serverless SQL pools
  • Query Parquet data with serverless SQL pools
  • Create external tables for Parquet and CSV files
  • Create views with serverless SQL pools
  • Secure access to data in a data lake when using serverless SQL pools
  • Configure data lake security using Role-Based Access Control (RBAC) and Access Control List

 

Module 3: Data exploration and transformation in Azure Databricks

  • This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks.
  • The student will learn how to perform standard DataFrame methods to explore and transform data.
  • They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data.

Lessons

  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks
  • Lab : Data Exploration and Transformation in Azure Databricks
  • Use DataFrames in Azure Databricks to explore and filter data
  • Cache a DataFrame for faster subsequent queries
  • Remove duplicate data
  • Manipulate date/time values
  • Remove and rename DataFrame columns
  • Aggregate data stored in a DataFrame

 

Module 4: Explore, transform, and load data into the Data Warehouse using Apache Spark

  • This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store.
  • The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures.
  • Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool.

Lessons

  • Understand big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics
  • Lab : Explore, transform, and load data into the Data Warehouse using Apache Spark
  • Perform Data Exploration in Synapse Studio
  • Ingest data with Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Spark pools in Azure Synapse Analytics
  • Integrate SQL and Spark pools in Azure Synapse Analytics

 

Module 5: Ingest and load data into the data warehouse

  • This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines.
  • The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL.
  • The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion.

Lessons

  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory
  • Lab : Ingest and load Data into the Data Warehouse
  • Perform petabyte-scale ingestion with Azure Synapse Pipelines
  • Import data with PolyBase and COPY using T-SQL
  • Use data loading best practices in Azure Synapse Analytics

 

Module 6: Transform data with Azure Data Factory or Azure Synapse Pipelines

  • This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks.

Lessons

  • Data integration with Azure Data Factory or Azure Synapse Pipelines
  • Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines
  • Lab : Transform Data with Azure Data Factory or Azure Synapse Pipelines
  • Execute code-free transformations at scale with Azure Synapse Pipelines
  • Create data pipeline to import poorly formatted CSV files
  • Create Mapping Data Flows

 

Module 7: Orchestrate data movement and transformation in Azure Synapse Pipelines

  • In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines.

Lessons

  • Orchestrate data movement and transformation in Azure Data Factory
  • Lab : Orchestrate data movement and transformation in Azure Synapse Pipelines
  • Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines

 

Module 8: End-to-end security with Azure Synapse Analytics

  • In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure.
  • The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities.
  • The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools.

Lessons

  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data
  • Lab : End-to-end security with Azure Synapse Analytics
  • Secure Azure Synapse Analytics supporting infrastructure
  • Secure the Azure Synapse Analytics workspace and managed services
  • Secure Azure Synapse Analytics workspace data

 

  • In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace.
  • The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless.

Lessons

  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark pools
  • Query Azure Cosmos DB with serverless SQL pools
  • Lab : Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Synapse Analytics
  • Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics

 

Module 10: Real-time Stream Processing with Stream Analytics

  • In this module, students will learn how to process streaming data with Azure Stream Analytics.
  • The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics.
  • Finally, the student will learn how to scale the Stream Analytics job to increase throughput.

Lessons

  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics
  • Lab : Real-time Stream Processing with Stream Analytics
  • Use Stream Analytics to process real-time data from Event Hubs
  • Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics
  • Scale the Azure Stream Analytics job to increase throughput through partitioning
  • Repartition the stream input to optimize parallelization

 

Module 11: Create a Stream Processing Solution with Event Hubs and Azure Databricks

  • In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming.
  • The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data.
  • Finally, the student will connect to Event Hubs to read and write streams.

Lessons

  • Process streaming data with Azure Databricks structured streaming
  • Lab : Create a Stream Processing Solution with Event Hubs and Azure Databricks
  • Explore key features and uses of Structured Streaming
  • Stream data from a file and write it out to a distributed file system
  • Use sliding windows to aggregate over chunks of data rather than all data
  • Apply watermarking to remove stale data
  • Connect to Event Hubs read and write streams

 

  • Describe Azure Synapse Analytics
  • Describe Azure Databricks
  • Describe Azure Data Lake storage
  • Describe Delta Lake architecture
  • Describe Azure Stream Analytics
  • Understand Azure Synapse serverless SQL pools capabilities
  • Query data in the lake using Azure Synapse serverless SQL pools
  • Create metadata objects in Azure Synapse serverless SQL pools
  • Secure data and manage users in Azure Synapse serverless SQL pools
  • Describe Azure Databricks
  • Read and write data in Azure Databricks
  • Work with DataFrames in Azure Databricks
  • Work with DataFrames advanced methods in Azure Databricks
  • Describe big data engineering with Apache Spark in Azure Synapse Analytics
  • Ingest data with Apache Spark notebooks in Azure Synapse Analytics
  • Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics
  • Integrate SQL and Apache Spark pools in Azure Synapse Analytics
  • Use data loading best practices in Azure Synapse Analytics
  • Petabyte-scale ingestion with Azure Data Factory
  • Perform data integration with Azure Data Factory
  • Perform code-free transformation at scale with Azure Data Factory
  • Orchestrate data movement and transformation in Azure Synapse Pipelines
  • Secure a data warehouse in Azure Synapse Analytics
  • Configure and manage secrets in Azure Key Vault
  • Implement compliance controls for sensitive data
  • Design hybrid transactional and analytical processing using Azure Synapse Analytics
  • Configure Azure Synapse Link with Azure Cosmos DB
  • Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics
  • Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics
  • Enable reliable messaging for Big Data applications using Azure Event Hubs
  • Work with data streams by using Azure Stream Analytics
  • Ingest data streams with Azure Stream Analytics
  • Process streaming data with Azure Databricks structured streaming
  • Explore compute and storage options for data engineering workloads in Azure
  • Run interactive queries using serverless SQL pools
  • Perform data Exploration and Transformation in Azure Databricks
  • The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure.
  • The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.
Download
Course
Brochure

Prerequisites

This course is available at :

Classroom Training

Cairo
Giza
Onsite

Online Training

Virtual Interactive Instructor LED
Self-Paced Training

WHY CHOOSE CLS

Experience

We have been in the market since 1995, and we kept accumulating experience in the training business, and providing training for more than 100,000 trainees ever since, in Egypt, and the MENA region.

Premium Facilities

CLS facilities are well-equipped with strong hardware and software technologies that aid both students and trainers lead very effective smooth training programs.

Customer Support

We provide our clients with the best solutions, customized to their specific needs and goals. Our team is highly qualified to answer whatever questions you have.

Global Accredited

CLS is an authorized and accredited partner by technology leaders. This means that our training programs are of the highest quality source materials.

Up To Date

We keep tabs on every change in the market and the technology field, so our training programs will always be updated up to the World-class latest standards, and adapted to the global shape-shifting job market.

Certified Instructors

We select the best instructors, who are certified from trustworthy international vendors. They share their professional experience with the Trainees, so they can have a clear hands-on experience.

Over 200,000 Gradutes From CLS

Play Video
Amr Mostafa
An employee of the Security Department at the Ministry of Electricity

I`m attending now CEH Training with Eng Mohamed Hamdy ,CISSP Training with Eng Mohamed Gohar, I really learned a lot from him , everything here in CLS  is very satisfying including facilities .

Play Video
Lamiaa Medhat
CIO

We took a series of courses as the digital Transformation Unit of the ministry . we just finished CRISC Certification Training with DR Adel Abdel Meneim . Thank you CLS for all your efforts, we really appreciate it

Play Video
Ahmed Salah
Senior Cyber Security Engineer

Me and my colleagues are working in a government Organization, We took a no. of cyber security trainings with CLS starting with CEH and CISSP. we liked every thing the instructors, the stuff and whole environment

Play Video
Ferras Hassan
Head of the Programming Department at Bashayer Energy Company

I`m attending ASP.NET Core with MVC Training with Eng Mohamed Hesham , I really learned a lot from him , everything here in CLS  is very satisfying including facilities .Thanks you all team.

Play Video
Mohamed Ahmed Ali
Systems management specialist

Qualifying the cadres of digital transformation units in government agencies moving to the administrative capital .Thanks CLS

Play Video
Zeinab Salah
Software Developer at Bashayer Energy Company

I`m attending ASP.NET Core with MVC Training with Eng Mohamed Hesham , I really learned a lot from him , everything here in CLS  is very satisfying including facilities .Thanks you all team.

Play Video
Ibrahim Khalaf
IT Infrastructure and Security Manger

I`m attending now CRISC Training with DR Adel Abdel Meneim , I really learned a lot from him , everything here in CLS  is very satisfying including facilities , locations and the team.

Play Video
Samar Shams ElDin
Programmer at Bashayer Energy Company

I`m attending ASP.NET Core with MVC Training with Eng Mohamed Hesham , I really learned a lot from him , everything here in CLS  is very satisfying including facilities .Thanks you all team.

Student Application For

Data Engineering on Microsoft Azure
Full Name *
Email *
Phone *
Full Phone
Training Location *
Additional Request

Business Application For

Data Engineering on Microsoft Azure
Full Name *
Company Name *
Job Title *
Number of Employees
Email *
Phone *
Full Phone
Training Location *
Additional Request